Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors.
نویسندگان
چکیده
Intraflagellar transport (IFT) is an active event in which cargo is transported along microtubules by motor proteins such as kinesin and dynein. IFT proteins are required for the formation and maintenance of flagella and cilia. We have previously shown that mouse mutants for two IFT proteins, IFT88 and IFT172, as well as Kif3a, a subunit of mouse kinesin 2, exhibit ventral spinal cord patterning defects that appear to result from reduced hedgehog (Hh) signaling. Although genetic epistasis experiments place IFT proteins downstream of the Hh receptor and upstream of the Gli transcription factors, the mechanism by which IFT regulates Gli function is unknown. The developing limb provides an excellent system to study Hh signaling, in particular as it allows a biological and molecular readout of both Gli activator and repressor function. Here we report that homozygous mutants for flexo (Fxo), a hypomorphic allele of mouse IFT88 generated in our ENU mutagenesis screen, exhibit polydactyly in all four limbs. Molecular analysis indicates that expression domains of multiple posteriorly restricted genes are expanded anteriorly in the mutant limbs, similar to loss of Gli3 transcriptional repressor function. Sonic hedgehog (Shh) expression is normal, yet Ptch1 and Gli1, two known targets of Hh signaling, are greatly reduced, consistent with loss of Shh signaling. Expression of Gli3 and Hand2 in the mutant limb indicates that the limb prepattern is abnormal. In addition, we show that partial loss-of-function mutations in another mouse IFT gene, Ift52 (Ngd5), result in similar phenotypes and abnormal Hh signaling as Fxo, indicating a general requirement for IFT proteins in Hh signaling and patterning of multiple organs. Analysis of Ift88 and Shh double mutants indicates that, in mouse, IFT proteins are required for both Gli activator and repressor functions, and Gli proteins are insensitive to Hh ligand in the absence of IFT proteins. Finally, our biochemical studies demonstrate that IFT proteins are required for proteolytic processing of Gli3 in mouse embryos. In summary, our results indicate that IFT function is crucial in the control of both the positive and negative transcriptional activities of Gli proteins, and essential for Hh ligand-induced signaling cascade.
منابع مشابه
Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins.
Sonic hedgehog (Shh) signaling is required for the growth and patterning of many tissues in vertebrate embryos, but important aspects of the Shh signal transduction pathway are poorly understood. For example, the vesicle transport protein Rab23 is a cell autonomous negative regulator of Shh signaling, but the process affected by Rab23 has not been defined. Here, we demonstrate that Rab23 acts u...
متن کاملThe heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function.
GLI transport to the primary cilium and nucleus is required for proper Hedgehog (HH) signaling; however, the mechanisms that mediate these trafficking events are poorly understood. Kinesin-2 motor proteins regulate ciliary transport of cargo, yet their role in GLI protein function remains unexplored. To examine a role for the heterotrimeric KIF3A-KIF3B-KAP3 kinesin-2 motor complex in regulating...
متن کاملExpression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities.
The Cubitus interruptus (Ci) and Gli proteins are transcription factors that mediate responses to Hedgehog proteins (Hh) in flies and vertebrates, respectively. During development of the Drosophila wing, Ci transduces the Hh signal and regulates transcription of different target genes at different locations. In vertebrates, the three Gli proteins are expressed in overlapping domains and are par...
متن کاملGenetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development.
Gli proteins regulate the transcription of Hedgehog (Hh) target genes. Genetic studies in mouse have shown that Gli1 is not essential for embryogenesis, whereas Gli2 acts as an activator of Hh target genes. In contrast, misexpression studies in Xenopus and cultured cells have suggested that Gli1 can act as an activator of Hh-regulated genes, whereas Gli2 might function as a repressor of a subse...
متن کاملArhgap36-dependent activation of Gli transcription factors.
Hedgehog (Hh) pathway activation and Gli-dependent transcription play critical roles in embryonic patterning, tissue homeostasis, and tumorigenesis. By conducting a genome-scale cDNA overexpression screen, we have identified the Rho GAP family member Arhgap36 as a positive regulator of the Hh pathway in vitro and in vivo. Arhgap36 acts in a Smoothened (Smo)-independent manner to inhibit Gli rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 132 13 شماره
صفحات -
تاریخ انتشار 2005